(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
fib(0) → 0
fib(s(0)) → s(0)
fib(s(s(0))) → s(0)
fib(s(s(x))) → sp(g(x))
g(0) → pair(s(0), 0)
g(s(0)) → pair(s(0), s(0))
g(s(x)) → np(g(x))
sp(pair(x, y)) → +(x, y)
np(pair(x, y)) → pair(+(x, y), x)
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fib(0') → 0'
fib(s(0')) → s(0')
fib(s(s(0'))) → s(0')
fib(s(s(x))) → sp(g(x))
g(0') → pair(s(0'), 0')
g(s(0')) → pair(s(0'), s(0'))
g(s(x)) → np(g(x))
sp(pair(x, y)) → +'(x, y)
np(pair(x, y)) → pair(+'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
fib(0') → 0'
fib(s(0')) → s(0')
fib(s(s(0'))) → s(0')
fib(s(s(x))) → sp(g(x))
g(0') → pair(s(0'), 0')
g(s(0')) → pair(s(0'), s(0'))
g(s(x)) → np(g(x))
sp(pair(x, y)) → +'(x, y)
np(pair(x, y)) → pair(+'(x, y), x)
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
Types:
fib :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sp :: pair → 0':s
g :: 0':s → pair
pair :: 0':s → 0':s → pair
np :: pair → pair
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
g, +'
(6) Obligation:
TRS:
Rules:
fib(
0') →
0'fib(
s(
0')) →
s(
0')
fib(
s(
s(
0'))) →
s(
0')
fib(
s(
s(
x))) →
sp(
g(
x))
g(
0') →
pair(
s(
0'),
0')
g(
s(
0')) →
pair(
s(
0'),
s(
0'))
g(
s(
x)) →
np(
g(
x))
sp(
pair(
x,
y)) →
+'(
x,
y)
np(
pair(
x,
y)) →
pair(
+'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
fib :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sp :: pair → 0':s
g :: 0':s → pair
pair :: 0':s → 0':s → pair
np :: pair → pair
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
g, +'
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_0':s3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
g(gen_0':s3_0(+(1, 0)))
Induction Step:
g(gen_0':s3_0(+(1, +(n5_0, 1)))) →RΩ(1)
np(g(gen_0':s3_0(+(1, n5_0)))) →IH
np(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
fib(
0') →
0'fib(
s(
0')) →
s(
0')
fib(
s(
s(
0'))) →
s(
0')
fib(
s(
s(
x))) →
sp(
g(
x))
g(
0') →
pair(
s(
0'),
0')
g(
s(
0')) →
pair(
s(
0'),
s(
0'))
g(
s(
x)) →
np(
g(
x))
sp(
pair(
x,
y)) →
+'(
x,
y)
np(
pair(
x,
y)) →
pair(
+'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
fib :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sp :: pair → 0':s
g :: 0':s → pair
pair :: 0':s → 0':s → pair
np :: pair → pair
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s
Lemmas:
g(gen_0':s3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
+'
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s3_0(
a),
gen_0':s3_0(
n4858_0)) →
gen_0':s3_0(
+(
n4858_0,
a)), rt ∈ Ω(1 + n4858
0)
Induction Base:
+'(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(a)
Induction Step:
+'(gen_0':s3_0(a), gen_0':s3_0(+(n4858_0, 1))) →RΩ(1)
s(+'(gen_0':s3_0(a), gen_0':s3_0(n4858_0))) →IH
s(gen_0':s3_0(+(a, c4859_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
fib(
0') →
0'fib(
s(
0')) →
s(
0')
fib(
s(
s(
0'))) →
s(
0')
fib(
s(
s(
x))) →
sp(
g(
x))
g(
0') →
pair(
s(
0'),
0')
g(
s(
0')) →
pair(
s(
0'),
s(
0'))
g(
s(
x)) →
np(
g(
x))
sp(
pair(
x,
y)) →
+'(
x,
y)
np(
pair(
x,
y)) →
pair(
+'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
fib :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sp :: pair → 0':s
g :: 0':s → pair
pair :: 0':s → 0':s → pair
np :: pair → pair
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s
Lemmas:
g(gen_0':s3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
+'(gen_0':s3_0(a), gen_0':s3_0(n4858_0)) → gen_0':s3_0(+(n4858_0, a)), rt ∈ Ω(1 + n48580)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(14) BOUNDS(n^1, INF)
(15) Obligation:
TRS:
Rules:
fib(
0') →
0'fib(
s(
0')) →
s(
0')
fib(
s(
s(
0'))) →
s(
0')
fib(
s(
s(
x))) →
sp(
g(
x))
g(
0') →
pair(
s(
0'),
0')
g(
s(
0')) →
pair(
s(
0'),
s(
0'))
g(
s(
x)) →
np(
g(
x))
sp(
pair(
x,
y)) →
+'(
x,
y)
np(
pair(
x,
y)) →
pair(
+'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
fib :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sp :: pair → 0':s
g :: 0':s → pair
pair :: 0':s → 0':s → pair
np :: pair → pair
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s
Lemmas:
g(gen_0':s3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
+'(gen_0':s3_0(a), gen_0':s3_0(n4858_0)) → gen_0':s3_0(+(n4858_0, a)), rt ∈ Ω(1 + n48580)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
fib(
0') →
0'fib(
s(
0')) →
s(
0')
fib(
s(
s(
0'))) →
s(
0')
fib(
s(
s(
x))) →
sp(
g(
x))
g(
0') →
pair(
s(
0'),
0')
g(
s(
0')) →
pair(
s(
0'),
s(
0'))
g(
s(
x)) →
np(
g(
x))
sp(
pair(
x,
y)) →
+'(
x,
y)
np(
pair(
x,
y)) →
pair(
+'(
x,
y),
x)
+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
Types:
fib :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
sp :: pair → 0':s
g :: 0':s → pair
pair :: 0':s → 0':s → pair
np :: pair → pair
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s
Lemmas:
g(gen_0':s3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':s3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(20) BOUNDS(n^1, INF)